Efficient estimation of semiparametric transformation models for counting processes

نویسنده

  • DONGLIN ZENG
چکیده

A class of semiparametric transformation models is proposed to characterise the effects of possibly time-varying covariates on the intensity functions of counting processes. The class includes the proportional intensity model and linear transformation models as special cases. Nonparametric maximum likelihood estimators are developed for the regression parameters and cumulative intensity functions of these models based on censored data. The estimators are shown to be consistent and asymptotically normal. The limiting variances for the estimators of the regression parameters achieve the semiparametric efficient bounds and can be consistently estimated. The limiting variances for the estimators of smooth functionals of the cumulative intensity function can also be consistently estimated. Simulation studies reveal that the proposed inference procedures perform well in practical settings. Two medical studies are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

Semiparametric Maximum Likelihood Estimation in Normal Transformation Models for Bivariate Survival Data.

We consider a class of semiparametric normal transformation models for right censored bivariate failure times. Nonparametric hazard rate models are transformed to a standard normal model and a joint normal distribution is assumed for the bivariate vector of transformed variates. A semiparametric maximum likelihood estimation procedure is developed for estimating the marginal survival distributi...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

TECHNICAL REPORT Proofs of Asymptotic Results for “Maximum Likelihood Estimation in Semiparametric Transformation Models for Counting Processes”

Condition 2. With probability one, Z(.) has bounded total variation in [0, τ ]. In addition, if there exists a vector γ and a deterministic function γ0(t) such that γ0(t) + γ T Z(t) = 0 with probability one, then γ = 0 and γ0(t) = 0. Condition 3. With probability one, there exists a positive constant δ such that pr(C ≥ τ |Z) > δ and pr(Y (τ) = 1|Z) > δ, where Y (τ) = 1 means that Y ∗(t) = 1 for...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006